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Federated recommendation aims to collect global knowledge by aggregating local models from massive
devices, to provide recommendations while ensuring privacy. Current methods mainly leverage aggregation
functions invented by federated vision community to aggregate parameters from similar clients, e.g., clustering
aggregation. Despite considerable performance, we argue that it is suboptimal to apply them to federated
recommendation directly. This is mainly reflected in the disparate model structures. Different from structured
parameters like convolutional neural networks in federated vision, federated recommender models usually
distinguish itself by employing one-to-one item embedding table. Such a discrepancy induces the challenging
embedding skew issue, which continually updates the trained embeddings but ignores the non-trained ones
during aggregation, thus failing to predict future items accurately. To this end, we propose a personalized
Federated recommendation model with Composite Aggregation (FedCA), which not only aggregates similar
clients to enhance trained embeddings but also aggregates complementary clients to update non-trained
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embeddings. Besides, we formulate the overall learning process into a unified optimization algorithm to jointly
learn the similarity and complementarity. Extensive experiments on several real-world datasets substantiate
the effectiveness of our proposed model. Our code is available at https://github.com/hongleizhang/FedCA.

CCS Concepts: • Information systems→ Collaborative filtering; • Security and privacy→ Privacy
protections;

Additional Key Words and Phrases: Federated Recommendation, Composite Aggregation, Embedding Skew,
Model Similarity, Data Complementary
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1 Introduction
Federated Recommendation (FR), as an emerging distributed learning paradigm [5, 57, 59],
has attracted significant interest from both academia [2, 58] and industry [17, 43]. Existing FRs
typically employ different collaborative filtering backbones as their local models [19, 27, 47] and
perform various aggregation functions to obtain a global recommender, following basic Feder-
ated Learning (FL) principles [38]. For instance, one pioneering work is FCF [1], which is an
adaptation of centralized matrix factorization by performing local updates and global aggregation
with federated optimization. FedNCF [44] integrates the linearity of matrix factorization with
the non-linearity of deep embedding techniques, building upon the foundations of FCF. Besides,
FedIAR integrates personalized item embedding exploration, enhancing global representation while
achieving personalized collaboration for FR [62]. These embedding-based FR models effectively
balance model accuracy and data privacy [21, 32, 54].

Generally, the success of FRs stems from their capability to embody data locality while achieving
knowledge globality across multiple clients through aggregation functions [15, 31, 50]. These
functions play a crucial role in federated optimization, determining which knowledge from each
client and to what extent it is integrated into the global model [53]. Among them, the most well-
known method is FedAvg, which allocates larger weights to clients with more data samples to
perform weighted aggregation, thus achieving better knowledge collection [38]. Subsequent works
aim to improve aggregation strategies to address the data heterogeneity challenge in federated
settings [12, 22, 34]. For instance, PerFedRec first exploits clustering mechanisms to identify
clients with similar data distributions and then conducts group-wise aggregation to accomplish the
adaptation process [35]. FedEM introduces an elastic model merging mechanism that blends global
aggregated parameters with preserved local models, mitigating the aggregation bottleneck [8].
Besides, PFedCLR introduces a dual-function module that calibrates user embedding skew caused
by aggregation process while personalizing item embeddings via low-rank buffer decomposition,
enabling more accurate global aggregation [7]. The above aggregation methods effectively mitigate
the heterogeneity challenge by considering fine-grained model similarity.

Notably, such aggregation functions utilized in FRs are primarily inspired by those in federated
vision community, such as weighted aggregation [38], clustering aggregation [34], and attentive
aggregation [22]. Here, “federated vision community” in this work refers to traditional FL methods
such as FedAvg [38] and FedProx [29], which primarily utilize Convolutional Neural Networks
(CNNs) to perform vision tasks in federated settings. All of these aggregation methods are es-
sentially rely on model similarity, where similar clients with consistent parameter distributions
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Fig. 1. Taking two clients as an ideal example in federated vision tasks, ⊕ denotes aggregation operators. We
illustrate similarity-based aggregation using weighted aggregation (a) and attentive aggregation (b) with
multi-layer networks, where 0.5 serves as the average coefficient, and 0.4 and 0.6 represent the attention
coefficients. Similarity aggregation can continuously update model parameters in federated vision tasks.

are assigned more weights, while dissimilar clients are given relatively smaller weights. Hence,
similarity-based aggregation primarily distinguishes among clients by their model parameter
distributions and performs weighted aggregation based on model similarity, thereby alleviating
heterogeneity. Despite achieving satisfactory performance, we argue that directly adopting off-
the-shelf aggregation functions from federated vision domain may not be well-adapted to FR
tasks, which naturally exhibit significant heterogeneity and are highly required personalization
preference for each client.
The reason for this research gap is mainly reflected in the disparate model structures between

federated vision and federated recommender tasks [53, 60]. Specifically, federated vision models,
e.g., CNNs [51], typically with a deep structure involving multiple networks (a.k.a., structured
parameters), as shown in Figure 1. Owing to the nonlinear mapping of structured parameters,
local features are encoded into the parameters of each layer. As long as local data are available,
the parameters of all layers in this client are updated, leaving no network layer untouched. As
depicted in Figure 1(a), by aggregating the parameters of clients A and B with similar distributions
(light blue and dark blue, respectively), an aggregated model (medium blue) can be obtained.
Consequently, similarity-based aggregation can achieve a more optimal parameter space for all
network layers by aggregating parameters from similar clients. Unlike federated vision models,
federated recommender models usually distinguish itself by employing one-to-one item embedding
table, as shown in Figure 2. Since different clients may involve distinct subsets of interacted items,
leading to different rows trained in the embedding table for each client. When only relying on
model similarity aggregation, it leads to the unique embedding skew issue in FRs, where trained
embeddings (blue) continually improve while non-trained embeddings (gray) keep intact or even
deteriorate during aggregation, as depicted in Figure 2(a). Hence, it poses a great challenge to
predict uninteracted items in local device solely by similarity aggregation.
In this work, we take the first step in exploring aggregation mechanisms for FR models and

identify the unique embedding skew issue in FR tasks. In light of this, we propose a composite
aggregation mechanism tailored to embedding tables in FR scenarios, which considers not only
model similarity but also data complementarity. We provide a theoretical guarantee that fine-
grained heterogeneity modeling requires the mutual reinforcement of model similarity and data
complementarity. It is important to note that similarity and complementarity are not mutually
exclusive. High data complementarity does not imply small model similarity. Such a mechanism
can aggregate not only similar clients but also complementary ones, thus updating the already
trained embeddings, and enhancing those that were not trained. Hence, it can improve the ability
to predict future items on edge devices in FR tasks, as shown in Figure 2(b). Building on model
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Fig. 2. Taking two clients as an ideal example in FR tasks, ⊕ denotes aggregation operators. Previous work
can only update trained items repeatedly within embedding tables via similarity aggregation (a), while our
composite aggregation (b) can both update trained items and enhance non-trained items.

similarity, we introduce data complementarity as an additional source of information, thereby
expanding the scope of item updates. This enables not only the updating of items already captured
by model similarity but also the enhancement of new items derived from data complementarity.
Besides, we formulate the aggregation process into a unified optimization framework to jointly
learn the similarity and complementarity metrics, encompassing several classical aggregation
methods. Extensive experiments on several datasets show that our proposed model consistently
outperforms several state-of-the-art methods.

In summary, our main contributions are listed as follows:

—We identify the embedding skew issue caused by aggregating embedding tables in FR tasks
from empirical analysis. From theoretical perspectives, we rethink the heterogeneity in FRs to
account for embedding skew. Building on traditional model similarity, we introduce a fine-
grained heterogeneity modeling mechanism for the introduction of data complementarity.

—We propose a composite aggregation mechanism tailored for FR tasks, which flexibly accounts
for both model similarity and data complementarity during the embedding table aggregation
process to address the identified embedding skew issue.

—We introduce a unified aggregation optimization framework that encompasses various classic
aggregation mechanisms and enables efficient model optimization.

—Extensive experiments on several real-world datasets show that our model consistently
outperforms several state-of-the-art aggregation methods.

2 Related Work
In this section, we summarize the prior work on traditional FRs as well as recent advancements in
personalized FRs. For a comprehensive review, please refer to the recent survey papers [5, 55].

2.1 Traditional FR
Traditional FRs aim to learn a shared item encoder for all clients and a private user encoder for
each client [23, 30, 46, 55]. It mainly comprises three modules: a private user encoder, a shared item
encoder, and a fusion module [49, 56], following basic FL principle [9, 29, 38]. Some attempts are
launched to follow these three lines [44, 49, 58]. Specifically, HPFL introduced a hierarchical user
encoder to differentiate between private and public user information [49]. Zhang et al. proposed
federated discrete optimization model to learn binary codes of item encoder [58]. FedNCF attempted
to use a multi-layer perceptron fusion module to learn non-linearities between users and items
[44]. Subsequent research has built upon this foundation to explore more comprehensive FRs, such
as privacy-enhanced FRs [6, 33, 60, 61], multimodal FRs [37], resource-efficient FRs [26, 41, 58], and
robustness-enhanced FRs [46]. For instance, DuAda combines a dummy user simulator with an
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adaptive distribution attacker to craft realistic malicious clients and perform targeted poisoning in
FR, while a merged adaptive defense is designed to counter such attacks. These efforts are directed
toward developing a more comprehensive framework for FR.

2.2 Personalized FR
To achieve personalized FRs, some pioneerworks aim to learn personalized item encoders [16, 31, 48],
such as dual personalization [56] and additive personalization [31]. Specifically, PerFedRec++
leverages self-supervised graph pre-training with privacy-preserving augmentation to enhance
personalization [36]. Besides, FedCF jointly encodes shared and personalized knowledge with dual
encoders and a gating network, leveraging a VAE-based CF formulation to balance personalization
and generalization. Note that the above methods employ the classic FedAvg for aggregation [38].
Subsequent methods attempt to improve the effectiveness of FedAvg, such as clustering aggregation
[12, 20, 35, 40], attention aggregation [22], and graph aggregation [52]. For instance, FedFast [40]
used clustering aggregation to enhance training efficiency, while FedAtt [22] utilized attention
to learn coefficients between global and local models. pFedGraph [52] introduced a collaborative
graph to learn the similarity between individuals. By modeling the relationships among clients as
a graph, it can better understand the underlying patterns and dependencies, thereby improving
the personalization for each client. FedCIA introduces a collaborative aggregation mechanism
that aggregates item similarity matrices instead of model parameters, enabling parameter-free
aggregation [15]. Despite achieving considerable results, all aggregation methods are with similarity
assumption, which is more suitable for structured parameters in federated vision tasks. Different
from previous work, we are the first work to design composite aggregation mechanism tailored
for FR tasks, which simultaneously considers similarity and complementarity metrics to more
effectively aggregate embedding tables.

3 Empirical Analysis
By analyzing disparate model structures with federated vision models, we intuitively explored
the embedding skew issue that uniquely occurred during aggregation process in FR tasks. To
experimentally validate our findings, as illustrated in Figure 2(a), this section conducts verification
analysis on two commonly used datasets (Filmtrust [14] and Movielens [18]) in FR tasks, aiming to
show the unique embedding skew issue from an empirical perspective.

Specifically, we conduct exploratory experiments with improved FedAvg model by aggregating
parameters with B ∈ {10, 20, · · · , 100}most similar clients. Concretely, we first use the L2 distance to
compute the uploadedmodel parameters to identify the 100most similar clients for each client.These
similar clients are then randomly shuffled to form a new list. We then examine the performance
changes as we aggregate B clients. This procedure aims to eliminate the disturbance of performance
degradation caused by sorting clients in descending order of similarity. We use the classic FedAvg
algorithm to implement similarity-based aggregation. As depicted in Figure 3, it is evident that as
the number of aggregated similar clients increases, the accuracy (HR@10 and NDCG@10) of the
train set continues to rise, while that of the test set generally declines on both datasets. Typically,
the accuracy trends of the training set and the test set should be consistent. This ultimately results
in a widening gap between the train and test sets, indicative of performance degradation caused by
embedding skew, i.e., trained embeddings of interacted items greatly enhanced while untrained
embeddings of non-interacted items deteriorated during aggregation.

Here, we aim to clarify the distinction between identified embedding skew issue and the easily
confused concept of overfitting from following aspects. (1) Performance Trends on Test Sets. Overfit-
ting causes the test performance to initially improve and then decline, whereas embedding skew
leads to a gradual decrease in test performance. (2)Horizontal Axis in Plots. Overfitting is observed as
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Fig. 3. Empirical results regarding HR@10 and NDCG@10 on train and test sets, respectively.

the number of training iterations increases, whereas embedding skew is observed as the number of
similar clients increases during aggregation processes. (3) Implementation Mechanisms. Overfitting
occurs during the continuous learning process from training data, whereas embedding skew arises
during the well-trained embedding table aggregation. Overall, the above empirical observation
indicates that solely utilizing similarity to aggregate embedding tables is suboptimal. This also
aligns with the motivation behind our proposed model, which exploits composite aggregation
considering both similarity and complementarity. Hence, it can delicately improve generalization
on test sets, thus enabling accurate modeling of future items on edge devices.

4 Problem Formulation
Here, we introduce the basic notations, general FR framework, rethinking heterogeneity in FRs,
and theoretical guarantees for complementarity in FRs.
Notations. Assume there are = users/clientsU = {D}, and< items I = {8} stored in the server.

Each user D keeps a local dataset DD , which comprises tuples (D, 8, AD8 |8 ∈ ID), where ID denotes
the observed items for client D, and each entry AD8 ∈ {0, 1} indicates the label for user D on item 8 .
The goal of FRs is to predict ÂD8 of user D for each future item 8 ∈ I \ ID on local devices.
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General FR Framework. Formally, the global objective of general FR over = clients is

min
(p1,p2,· · · ,p= ;Θ1,Θ2,· · · ,Θ= )

1
=

=∑
D=1

?DLD (pD,ΘD ;DD) , (1)

where pD and ΘD denote local user embedding and local parameters of item encoder stored in
clients, respectively. The server aggregates Θ6

D =
∑=

D=1 ?DΘD with aggregation weight ?D , e.g.,
?D = |DD |/|D| in FedAvg [38] to facilitate global update. LD is the task-specific objective (e.g., log
loss [19]) to facilitate local training. Traditional FRs attempt to learn a global model Θ6 across =
clients, where Θ6 = Θ

6

1 = · · · = Θ
6
= [1, 44], while personalized FRs keep different global models Θ6

D

to achieve high efficacy on their local clients [31, 56]. Note that unless otherwise specified, we use
item embedding table QD to instantiate general ΘD in following sections, since QD is the standard
configuration in embedding-based FRs [1, 40].

Rethinking Heterogeneity in FRs. The FR tasks naturally exhibit great heterogeneity in each client,
since the item sets interacted by each are vastly different, radically causing the embedding skew
issue. Formally, we assume ? (G,~) to denote the joint distribution of features G ∈ {(D, 8) |8 ∈ ID} and
labels~ ∈ {AD8 |8 ∈ ID}. For two heterogeneous clientsD and E , it is evident that ? (GD, ~D) ≠ ? (G E, ~E).
Currently, classical methods follow the simple assumption ? (G,~) = ? (~ |G), treating the conditional
distribution as equivalent to the joint distribution, to utilize model similarity to mitigate the concept
shift problem [24], by aggregating similar conditional distributions to ensure that ? (~D |GD) ≈
? (~E |G E) [12, 34]. However, we argue that there is significant natural heterogeneity in FRs, which
necessitates fine-grained modeling of ? (G,~), such that the joint distribution can be expressed
as ? (G,~) = ? (G)? (~ |G), the combination of the marginal and conditional distributions. Hence,
heterogeneity can be modeled as ? (GD) ? (~D |GD) ≠ ? (G E) ? (~E |G E). Therefore, if we aim to ensure
? (GD, ~D) ≠ ? (G E, ~E), then under the premise ofmaintainingmodel similarity ? (~D |GD) ≈ ? (~E |G E),
it is necessary to explicitly satisfy ? (GD) ≠ ? (G E). Thus, fine-grained heterogeneity modeling in FR
tasks becomes essential.
Effectiveness of Complementarity in FRs. We explain the rationale of introducing data comple-

mentarity from theoretical aspects. Specifically, we assume ? (G,~) to denote the joint distribution
of features G and labels ~. For two heterogeneous clients D and E , we have ? (GD, ~D) ≠ ? (G E, ~E).
Traditional similarity aggregation methods roughly model data distribution as ? (G,~) = ? (~ |G)
and only use model similarity to alleviate heterogeneity issues [24], like that

? (~D |GD) ≈ ? (~E |G E). (2)

In our context, we allow the local data following the joint distribution as ? (G,~) = ? (G)? (~ |G).
Hence, the fine-grained modeling of heterogeneity can be expressed as

? (GD) ? (~D |GD) ≠ ? (~E |G E) ? (G E) . (3)

Compared to Equation (2), it is clear that to ensure ? (GD, ~D) ≠ ? (G E, ~E), then under the premise
of maintaining model similarity ? (~D |GD) ≈ ? (~E |G E), it is necessary to explicitly satisfy ? (GD) ≠
? (G E). This newly introduced marginal distribution ? (GD) and ? (G E) precisely reflects the comple-
mentarity of local data, which is where the rationale of introducing complementarity lies. Thus,
we propose a composite aggregation mechanism to ensure both model similarity and data com-
plementarity, aiming to more accurately model the fine-grained heterogeneity. Overall, we model
both data complementarity ? (GD) ≠ ? (G E) and model similarity ? (~D |GD) ≈ ? (~E |G E) to expand the
scope of item updates, so as to alleviate the identified embedding skew issue.
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Fig. 4. The overall FedCA framework.

5 The Proposed Federated Recommendation with Composite Aggregation (FedCA)
Model

In this section, we elaborate on our proposed framework personalized FedCA, which considers
both model similarity and data complementarity. The goal is to alleviate the embedding skew
issue inherit in FR tasks. Concretely, we first formulate a unified learning framework to optimize
similarity and complementarity. Then, we provide a detailed optimization for server aggregation,
followed by the local training and inference on the client side. Finally, we provide more details
about FedCA and discuss the relationship between FedCA and other aggregation mechanisms.

5.1 The Overall Learning Framework
From a global perspective, we integrate the server aggregation and local training into a unified
optimization framework tailored for FR tasks, as depicted in Figure 4. It aims to optimize the per-
sonalized local parameters {pD,QD} and aggregation weight vector {wD} for each client, as shown
in Equation (4), which is influenced by the joint constraints of similarity and complementarity.

min
{pD ,QD ,wD }

=∑
D=1

(
LD (pD,QD ;DD) + U

=∑
E=1

FB (FDE ;QD ;QE)

+ V
=∑
E=1

F2 (FDE ;DD ;DE)
)

s.t. 1)wD = 1, wD ≥ 0.

(4)

where the term LD denotes the local empirical risk toward model parameters pD and QD , following
the weighted aggregation of model parameters QD =

∑=
E=1F=EQ

6
E downloaded from the server. The

term FB represents the model similarity between QD and QE , while the term F2 quantifies the data
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complementarity between DD and DE . The two constraints ensure wD satisfy normalization and
non-negativity. Besides, U and V are tuning coefficients.Through the unified learning framework, we
jointly optimize wD to a balance point to suitably aggregate item embeddings, thereby considering
both similarity and complementarity during the server aggregation and local training procedures.

5.1.1 Server Aggregation. The server’s responsibility is to optimize the aggregation weight wD

for each client D, thus achieving personalized aggregation for each client. Ideally, we aim for wD

to be perfectly optimized under the loss function in Equation (4). However, this is impractical
due to constraints imposed by federated settings. The server can only access the local models QD

uploaded by each client, without detailed knowledge of each client’s user embedding pD and local
data DD , thus making it challenging to directly compute LD at the server. To reasonably perceive
contribution of each client, we utilize the mean squared loss between wD and relative quantity of
local data p as a proxy for LD , measuring the optimization level of each client, inspired by recent
work [52]. Hence, the loss function to optimize wD at the server side is rewritten as

min
wD

=∑
E=1

((FDE − ?E)2 + UFB (FDE ;QD ;QE)

+ VF2 (FDE ;DD ;DE))
s.t. 1)wD = 1, wD > 0.

(5)

The above formulation minimizes the pre-defined supervised loss while balancing the similarity
and complementarity. To measure the similarity between conditional distributions of clients ? (~ |G),
we adopt common practices [24], i.e., local model parameters to capture the mapping from the
marginal distribution ? (G) to the label distribution ? (~). Hence the term FB can be represented as

FB (FDE ;QD ;QE) = (FDE − f (QD,QE))2 , (6)

where f (·) denotes the similarity function and here f (QD,QE) = 1/(1+ ‖ QD − QE ‖2). It can
be switched to any similarity function, e.g., cosine similarity. The function FB ensures that the
aggregation weight FDE increases when the models of two clients are highly similar. To assess
the complementarity of client data about marginal distributions ? (G) at the server side, we utilize
the intermediate features as proxies for local data DD , i.e., the subset of item embeddings QB

D

corresponding to the local interacted item sets ID . To further guard against input reconstruction
attacks in FRs [58], we perform Singular Value Decomposition (SVD) on QB

D and then retain the
left singular matrix with first : columns. This yields a privacy-enhanced representation XD of the
local data. Inspired by mutual information theory [28], the term F2 can be represented as

F2 (FDE ;DD ;DE) = −FDE · cos(q (XD,XE)), (7)

where q (XD,XE) = 1
:

∑:
;=1 arccos(x;D

)
x;E). q (·) is used to measure the angle between the ;th sin-

gular vectors corresponding to the data of two clients. This adapted approach relies on limited,
non-sensitive information to determine the degree of complementarity between clients [45]. The
principle angle method offers a geometric perspective for measuring the distance between sub-
spaces. Further ablation experiments explaining the rationale for using this metric can be found
in the experimental section. When the lengths of two vectors are unequal, we apply a padding
operation to keep consistency in lengths. The function F2 ensures that when the angle between
two clients is orthogonal, the smaller the mutual information between XD and XE , implying a
great complementarity between the two clients. We denote the similarity vector computed by f (·)
for each user D as sD and the complementarity vector computed by q (·) as cD . We can intuitively
see that Equation (5) can be easily rewritten as a standard quadratic program problem regarding
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the aggregation weight wD . Hence, it can be efficiently solved by classic convex optimization
solvers [10].
Optimizing wD for Composite Aggregation. To solve for wD in Equation (4), we first vectorize

the following variables. The relative dataset sizes for all clients can be represented as a vector
p = [?1, ?2, · · · , ?=]) . We denote the model similarity of userD to other clients as a vector sD and the
data complementarity of user D to other clients as a vector cD . Thus, we can transform Equation (4)
through derivation into a standard quadratic form:

wD = argmin
x

x) x + (−2p − 2UsD − VcD)) x

s.t. 1) x = 1, −x ≤ 0.
(8)

We can solve for the optimal personalized aggregation weight wD for each client with Equation (8).
Existing convex optimization solvers, such as the cvxpy package in PyTorch can efficiently solve
this quadratic program problem. By alternately solving for wD in Equation (8) on the server
and pD and QD on the local clients, we can ultimately achieve model convergence in federated
optimization procedure. To improve the efficiency of optimizing the aggregation coefficient wD , we
explore possible approximations and efficient solvers for the underlyingQuadratic Programming
(QP) problem, aiming to enable large-scale optimization in future applications. As for possible
approximations, first-order methods can be employed to trade a small loss in accuracy for significant
gains in scalability. In particular, gradient descent or projected gradient methods can be used in
place of exact second-order solutions, with further acceleration achieved through Nesterov’s
momentum or coordinate descent. As for possible efficient solvers, alternating direction method of
multipliers provides an efficient framework well-suited for distributed and federated settings [4], as
it decomposes the original large-scale problem into smaller subproblems, each of which typically
reduces to a simple projection or a small-scale QP, thereby substantially improving optimization
efficiency.
Effectiveness Analysis About wD . In a standard FR framework, it needs to learn a unique user

embedding pD for each client D and a shared item embedding table Q for all clients. However, this
approach may yield suboptimal performance in heterogeneous settings, where data distributions
vary significantly across clients. We assume that according to the local client’s data distribution,
each client has a ground-truth user embedding p∗D and a ground-truth item embedding table Q∗

D .
Therefore, the loss between these actual distributions and the predictions is as follows:

min
{pD },Q

=
1
=

=∑
D=1




p)DQ − p∗D
)Q∗

D




2
2
, (9)

where Q is shared across all clients. Our method can utilize the composite aggregation to learn
personalized item embedding QD for each client. Hence, the expected loss takes the following form:

min
{pD ,QD }

=
1
=

=∑
D=1




p)DQD − p∗D
)Q∗

D




2
2
, (10)

where QD =
∑=

E=1FDEQE is the personalized item embeddings by applying composite aggregation
for each client. Clearly, we can deduce that (p̃D, Q̃) is a global optimum of Equation (9) if and only
if p̃)u Q̃ = p∗D

) ( 1
=

∑=
D=1 Q

∗
D). Besides, if we denote (p̂D, {Q̂D}=) as a global optimum of Equation (10),

then it follows that p̂D) Q̂D = p∗D
)Q∗

D for each client D. Thus, our model finds an exact solution with
zero global loss, whereas Equation (9) has a global loss Δ:

Δ =
1
=

=∑
D=1






 1=p∗D) =∑
E=1

(
Q∗

E − Q∗
D

)




2
2

, (11)

ACM Transactions on Information Systems, Vol. 44, No. 2, Article 46. Publication date: January 2026.



Beyond Similarity: Personalized FR with Composite Aggregation 46:11

where Δ increases with the heterogeneity of Q∗
D . Moreover, since our formulation provides = matrix

equations, we can fully recover the column space of p∗D as long as Q∗
D ’s span R5 . Conversely,

solving Equation (9) yields only one matrix equation, so it fails to recover p∗D for any 5 > 1. Due to
the unique nature of FR tasks, combining similarity and complementarity allows for optimizing
embedding tables that better reflect the true local distribution. Thus, by introducing the composite
aggregation weight wD , it can achieve lossless personalized federated optimization.

By introducing both similarity and complementarity metrics into the overall aggregation frame-
work, we can not only aggregate similar item embeddings but also aggregate complementary
ones, thereby alleviating the specific embedding skew issue when aggregating item embedding
tables in FR tasks. Notably, it can ensure consistency in conditional distributions ? (~ |G) while
preserving complementarity in marginal distributions ? (G) to better model heterogeneity by the
joint distributions ? (G,~).

5.1.2 Local Training. The mission of each client D is to utilize local data to optimize the local
empirical loss LD regarding private user embedding pD and personalized item embedding QD . The
private user embedding pD is kept locally, while the computed item embedding QD is uploaded to
the server for global aggregation. To mine the information from interactions during training, we
specify LD as the Binary Cross-Entropy (BCE) loss, which is a well-designed objective function
for recommender systems. Formally, the objective function of BCE loss is defined as

LD = −
∑

(D,8 ) ∈DD

AD8 log ÂD8 + (1 − AD8 ) log (1 − ÂD8 ) , (12)

where DD = D+
D ∪ D−

D and D+
D represents observed interactions, i.e., AD8 = 1, and D−

D represents
uniformly sampled negative instances, i.e., AD8 = 0. Note that unlike federated vision tasks, which
require the proximal term to restrict personalized models to be closer to the global model, i.e.,
‖ QD − Q6

D ‖2 in FedProx [29], pFedGraph [52], and so on, where Q6
D denotes the global model, FR

tasks inherently involve great heterogeneity and strong requirements for personalization. Hence,
we solely use task-driven loss LD without additional terms to keep the localization properties of
item embedding. By optimizing the BCE loss in the local client, we can update the user embedding
pD and QD by stochastic gradient descent as follows

pD = pD − [ · mLD

mpD
, QD = QD − [ · mLD

mQD

, (13)

where [ is the learning rate. At the end of local training in each round, clients upload QD to the
server for global aggregation.

5.1.3 Local Inference. During the local inference stage, client D first downloads the aggregated
item embeddings Q6

D =
∑=

E=1FDEQE from the server. Notably, in federated vision domains, it can
directly perform local inference using shared global parameters Q6. However, in FR tasks, the
existence of client-specific user embedding pD introduces a spatial misalignment issue between the
user embedding pC−1D at previous round C−1 and the aggregated item embeddingQ6 (C )

D at this round C .
To achieve space alignment, we employ a simple yet effective interpolationmethod to narrow the gap
between local-specific parameters pD and global parametersQ6

D , i.e.,Q
6 (C )
D = dQ6 (C−1)

D + (1−d)Q6 (C )
D

where d controls the weight of the local parameters in the current round. By introducing d , we
balance the weight of local parameters QD and global aggregated parameters Q6

D , thereby aligning
items with users in the embedding space. After obtaining the item embedding q8D ∈ QD for each
item 8 , we can perform local inference with pD at the local client D, which is ÂD8 = 5

(
pD, q8D

)
, where

5 (·) denotes the inner product or neural match function [19] to compute similarities between user
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Algorithm 1: FedCA Executive Process

D and item 8 . By aggregating both similar and complementary clients, our model can enhance the
prediction accuracy for future items. We present the FedCA algorithm in detail in Algorithm 1.

5.2 More Discussion About FedCA
Considering the unique characteristics of FR tasks, we propose a unified composite aggregation
framework to finely aggregate embedding tables from an optimization perspective. This framework
flexibly integrates constraint terms that measure model similarity FB and data complementarity F2 ,
building on the task-specific loss LD for client D. This approach alleviates the embedding skew issue
caused by solely using similarity aggregation. Specifically, our proposed composite aggregation
framework is defined as follows:

min
{pD ,QD ,wD }

=∑
D=1

(
LD (pD,QD ;DD) + U

=∑
E=1

FB (FDE ;QD ;QE)

+ V
=∑
E=1

F2 (FDE ;DD ;DE)
)

s.t. 1)wD = 1, wD ≥ 0.

(14)

Note that our method is a model-agnostic, plug-and-play aggregation mechanism that can be
seamlessly integrated into the server aggregation process of mainstream FR tasks. Regarding
flexibility, we can customize the specific loss for model similarity FB and data complementarity
F2 , although we use squared loss in this work. As for model similarity FB , further research could
explore more potential model representations, such as dimensionality reduction techniques. For
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data complementarity F2 , future work could consider advanced complementarity metrics that
better align with the local data distribution. Regarding versatility, we can adaptively adjust the
values of U and V to implement mainstream aggregation mechanisms, such as weighted aggregation
(U = 0, V = 0), cluster-based aggregation (U ≠ 0, V = 0), and active aggregation (U = 0, V ≠ 0).
Hence, our method specifically summarizes a unified aggregation mechanism tailored for FR tasks.

Relations with Classic Aggregation Mechanisms. In this section, we will analyze the compatibility
of our proposed FedCA model. We introduce a unified optimization framework for aggregating item
embeddings in FR tasks. This framework can transform into several classical aggregation methods
by flexibly adjusting hyperparameters U and V , as well as the proxy coefficient ?D . Specifically, when
U = 0 and V = 0, and the proxy coefficient ?D is set to the mean, our method degrades to the average
aggregation method used in FCF [1]. When U = 0 and V = 0, and ?D is set to the relative dataset
size, our method achieves the weighted aggregation used in FedAvg [38]. When U = 0 and V = 0,
and ?D is set to the degree of difference between local and global models, our method can degrade
to the FedAtt method [22]. When U ≠ 0 and V = 0, it can become the similarity-based aggregation
method pFedGraph [52]. Specifically, if only the most similar clients are selected for each client, it
is equivalent to the clustering aggregation in PerFedRec [35]. When U = 0 and V ≠ 0, it implies
aggregating only dissimilar parameters for each client, which is equivalent to the FedFast [40],
where clients are first clustered, and then clients from each cluster are aggregated proportionally.
We conclude that our method can flexibly implement several aggregation methods.

Computation Complexity Analysis. The computation complexity of FR models primarily consists
of client-side and server-side components. Specifically, the complexity on the client side mainly
includes the local training process and the SVD process for privacy enhancement. The local training
process has a time complexity of $ (<5 ), while the privacy enhancement process involves the
SVD of QB

D ∈ R | ID |×5 , with a complexity of $ ( |ID |5 2), where |ID | is the number of items interacted
with by client D, and 5 is the embedding dimensions. It is worth noting that |ID | �< and 5 = 16
in this work. Therefore, the computational complexity on the client side is comparable to that of
classical FR models. The complexity on the server side mainly includes the aggregation process
and the optimization process. The aggregation process is a necessary step for any FR algorithm
and has a complexity of O(=<5 ). The optimization process primarily involves computing pairwise
similarity and complementarity, with a complexity of O(=2). This complexity is consistent with
that of mainstream similarity-based aggregation methods. We can leverage approximate nearest
neighbor search techniques to significantly improve the computation efficiency of similarity and
complementarity matrix calculations. Besides, since this process can independently solve for each
client, advanced parallel algorithms can reduce the complexity to O(= log=), or even as low as
O(=). This is feasible for computationally resource-rich servers, making it suitable for large-scale
deployment scenarios.

Privacy Discussion. Our FedCA approach maintains the same privacy protection standards as the
baseline models, e.g., FCF [1], PerFedRec [35], and PFedRec [56] since it protects user privacy by
keeping users’ original interaction records local and ensuring that private user embeddings do not
interact with unauthorized third parties. Besides, since our composite aggregation mechanism is
model-agnostic, it can seamlessly integrate with other privacy-enhanced FR models like FedRec
[33], and can easily incorporate various privacy protection strategies, such as differential privacy
[11], to further enhance user privacy guarantees.
Furthermore, we analyze the privacy protection capabilities of the proposed method from the

dimensions of user data, user embeddings, and item embeddings. (1) Our method follows the
standard setup of FRs and thus maintains the same privacy protection standards as baseline models,
e.g., FCF and PerFedRec. Specifically, it protects user privacy by keeping users’ original interaction
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Table 1. Statistics for the Datasets Used in the Evaluation

Datasets # Clients # Items # Ratings # Avg. Density

ML-100K 943 1,682 1,00,000 106 6.3%
Filmtrust 1,508 2,071 35,497 24 1.14%
ML-1M 6,040 3,952 10,00,209 166 4.19%
MC-100K 1,00,000 19,738 7,19,405 30 0.04%

records local and ensuring that private user embeddings do not interact with third parties. (2)
Our composite aggregation mechanism can enhance privacy protection of item embeddings by
introducing complementarity. Specifically, by incorporating complementary items from other clients
into item embeddings of the current client, it serves equivalent roles to pseudo-items, thereby
enhancing privacy protection of item embeddings, which is similar to FedRec and FedRec++. (3) We
introduced differential privacy into transmitted item embeddings of our method, with theoretically
guaranteed privacy of transmitted parameters, which is consistent with PFedRec and FedRAP. In
summary, our method considers comprehensive privacy protection regarding user local data, user
embeddings, and item embeddings.

6 Experiments
In this section, we provide detailed experimental settings and comprehensive experimental results.

6.1 Experimental Settings
Datasets. We evaluate our model on four benchmark datasets with varying client scales:Movielens-
100K (ML-100K) [18], Filmtrust [14], Movielens-1M (ML-1M) [18], and Microlens-100K (MC-
100K) [42]. The first three datasets are for movie recommendation with explicit feedback, where
ratings greater than 0 are converted to 1. The last dataset is for short video recommendation with
implicit feedback. Each user is treated as an independent client, and each client’s data inherently
exhibits great heterogeneity. The details about the used datasets are listed in Table 1, where # Avg.
represents the averaged number of interacted items by each client.

Baselines. To thoroughly explore the effectiveness of various aggregation mechanisms, we com-
pared eight classic federated models: (1) Local: local training without federated aggregation. (2)
FCF: [1] averaged aggregation by allocating equal weights to each client. (3) FedAvg: [38] weighted
aggregation by the relative size of local client data. (4) PerFedRec: [35] clustering aggregation by
grouping clients into several clusters with model similarities. (5) FedAtt: [22] attentive aggregation
by minimizing the weighted distance between global and local models. (6) FedFast: [40] active
aggregation by identifying representatives from different clusters. (7) pFedGraph: [52] graph aggre-
gation by learning the similarities between individuals. (8) PFedRec: [56] recent personalized FR
model, achieved through dual personalization of score function and item embedding.

Implementations. Following previous works [56], we randomly sample # = 4 negative instances
for each positive sample and utilize the leave-one-out strategy for efficient validation. Besides, we
filter out the users with fewer than 10 interactions. For our model, we set : = 4 and choose the
optimal values for hyperparameters on four datasets. Besides, we utilize two common evaluation
metrics for item ranking tasks: HR@K and NDCG@K where  = 10. We conduct hyperparameter
tuning for all compared models and report the results as the average of five repeated experiments.
To validate the model agnostics of our method, we verify its effectiveness on three canonical
backbones, PMF [39], NCF [19], and SASRec [25].
As for the settings of main experiments, we set the global rounds ) = 100, local epochs � = 10,

batch size � = 256, and learning rate [ = 0.01 for all methods for fair comparison. We set the
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Table 2. Comparison Results of FedCA and Other Baselines Evaluated on Four Commonly Used Datasets

Backbones Models ML-100K Filmtrust ML-1M MC-100K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

PMF

Local 0.4128 0.2203 0.4760 0.2410 0.4264 0.2314 0.1246 0.0567
FCF 0.4327 0.2497 0.6407 0.4914 0.4454 0.2484 0.1294 0.0594
FedAvg 0.4878 0.2786 0.6517 0.5126 0.4912 0.2751 0.1295 0.0601
PerFedRec 0.4973 0.2797 0.6577 0.5247 0.4623 0.2622 0.1255 0.0599
FedAtt 0.4645 0.2558 0.6088 0.3359 0.4310 0.2168 0.0982 0.0445
FedFast 0.4984 0.2747 0.6527 0.5191 0.5061 0.2898 0.1278 0.0600
pFedGraph 0.5928 0.4025 0.6961 0.5430 0.7904 0.6347 0.1324 0.0605
PFedRec 0.7254 0.4648 0.7096 0.5629 0.8032 0.6519 0.1334 0.0621
FedCA 0.8738 0.7597 0.7725 0.5945 0.8348 0.7118 0.1351 0.0678

NCF

Local 0.4077 0.2145 0.4312 0.2485 0.3881 0.1839 0.1004 0.0459
FCF 0.4115 0.2390 0.6477 0.4968 0.4269 0.2232 0.1290 0.0668
FedAvg 0.4478 0.2731 0.6507 0.4969 0.4899 0.2703 0.1397 0.0674
PerFedRec 0.4135 0.2253 0.3752 0.1418 0.4219 0.2093 0.1128 0.0591
FedAtt 0.4910 0.2626 0.6547 0.4801 0.4136 0.2177 0.1375 0.0669
FedFast 0.4436 0.2708 0.6632 0.5007 0.4040 0.2008 0.1402 0.0774
pFedGraph 0.5822 0.3587 0.6718 0.5021 0.5113 0.2992 0.1416 0.0669
PFedRec 0.6931 0.5031 0.6732 0.5031 0.6826 0.4041 0.1422 0.0687
FedCA 0.8452 0.7444 0.6836 0.5099 0.7815 0.6662 0.1465 0.0782

Higher values indicate better performance. The best results are in bold.

embedding dimensions 5 = 16 for users and items. We set the client aggregation ratio A = 60% for
all compared models. We use Adam optimizer with default parameters for local training. In this
work, we use uniform distribution to initialize QD and pD at the beginning of the server aggregation
and local training. For clustering methods such as PerFedRec and FedFast, we use the default
parameters of k-means and specify the number of clusters as 10. In NCF, the specific structure of the
Multi-Layer Perception (MLP) layers is [32, 16, 8]. During the optimization of MLP parameters,
we applied the weight decay technique with _ = 0.001. All experiments are conducted on a machine
with four RTX A5000 GPUs. For reproducibility, we release our source code and utilized data at
https://github.com/hongleizhang/FedCA.

6.2 Experimental Results
This section introduces the effectiveness of our method through various experiments, including
overall performance, analyses with different ratios of training data, and visualization results.

Overall Performance. Table 2 presents the results of our model compared to baselines using two
backbones, evaluated in terms of HR@10 andNDCG@10 across four datasets. From the experimental
results, we can observe that: (1) compared to local training, general FL methods (FedAvg, FedAtt, and
pFedGraph) and FR models (FCF, PerFedRec, FedFast, and PFedRec) demonstrate better predictive
performance, indicating the effectiveness of various aggregation mechanisms in federated settings.
(2) By comparing different aggregation mechanisms, it can be noticed that both similarity-based
aggregation (PerFedRec, FedAtt, and pFedGraph), and dissimilarity-based aggregation (FedFast)
can achieve effective knowledge aggregation in federated settings. This suggests the motivation
of our model to combine similarity and complementarity. (3) Our method outperforms other
baseline models, indicating that our composite aggregation, compared to solely using similarity for
aggregation as borrowed from federated vision, is more suitable for aggregating embedding tables
in FR tasks.
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Fig. 5. HR@10 results comparing our FedCA with FR baselines under varying train data ratios.

Robustness to Varying Sparsity of Train Data. Recall from the empirical analysis in Section 3
that solely using similarity for aggregating embedding tables in FRs can lead to embedding skew
issue. This means that as the aggregation process, those already trained embeddings improve
while untrained ones remain random or degrade, ultimately failing to make predictions on future
items. Our composite aggregation aims to alleviate this problem in FRs by combining similarity
and complementarity to enhance untrained embeddings. Hence, theoretically, even with limited
training data, our method can still achieve good generalization on test sets. Note that in federated
vision domains, each client can flexibly partition local data based on different label distributions to
reflect varying heterogeneity. This area has been extensively studied [29, 52]. However, in FR tasks,
each user naturally represents a single client, so each client’s local data are fixed. Thus, the data
partitioning methods mentioned above cannot be directly used in FRs. Hence, we use the sparsity
of local data to reflect heterogeneity in FRs, with the assumption that the sparser the local data, the
lower the probability of item overlap between clients, resulting in greater heterogeneity.

To explore the efficacy of our model, we evaluate the robustness of four FR methods instantiated
on PMF backbone under different train data sparsity (40%, 60%, 80%, and 100%). The experimental
results on HR@10 and NDCG@10 are shown in Figures 5 and 6. The results suggest that our
method consistently outperforms other baselines under different levels of training data sparsity,
directly demonstrating the effectiveness of our composite aggregation mechanism for aggregating
embedding tables in FRs. It also verifies the superiority of our approach in mitigating heterogeneity.
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Fig. 6. NDCG@10 results comparing FedCA with FR baselines under varying train data ratios.

Specifically, when the sparsity of train data is at 40%, our model greatly outperforms the baselines on
the ML-100K and MC-100K datasets. This indicates that combining similarity and complementarity
for aggregating embedding tables is highly effective for FR tasks, especially when training data are
very limited. Besides, we observed that the cluster-based aggregation method (PerFedRec) performs
the worst under sparse data conditions (40%) and exhibits very unstable learning process during
the training iterations. This is primarily because existing clustering methods (such as k-means [3])
require careful selection of the number of clusters, as different datasets have varying client scales.
Moreover, with limited data, it is challenging to accurately measure the similarity of each client,
ultimately leading to the failure of cluster-based aggregation methods. This finding is consistent
with the very recent work [20]. In contrast, our method formulates the process into a unified
optimization loss to smoothly select more similar clients, effectively achieving the benefits of
cluster-based aggregation without the need for manual parameter tuning.
In FR tasks, each user naturally represents a single client, so each client’s local data are inher-

ently fixed. Moreover, the items interacted with by each client differ substantially, giving rise to
inherent heterogeneity. Thus, the data partitioning methods with artificial manner in federated
vison tasks [29, 52] cannot be directly used in FRs. Hence, we use the sparsity of local data to
reflect heterogeneity in FRs, with the assumption that the sparser the local data, the lower the
probability of item overlap between clients, resulting in greater heterogeneity. Different forms of
heterogeneity also reflect distinct user behavior patterns. We have shown the robustness of FedCA
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Table 3. Results of FedCA and Baselines with Varying Heterogeneity across Four Datasets

g = 0.3
ML-100K Filmtrust ML-1M MC-100K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Local 0.2014 0.1006 0.2166 0.1058 0.1933 0.1046 0.0915 0.0412
FCF 0.3075 0.1709 0.2232 0.1163 0.3163 0.1849 0.1032 0.0448
PerFedRec 0.2813 0.1613 0.2327 0.1244 0.3596 0.2588 0.1094 0.0489
FedFast 0.3107 0.1833 0.2314 0.1236 0.3309 0.2401 0.1046 0.0462
PFedRec 0.5034 0.3894 0.2592 0.1283 0.3811 0.2902 0.1096 0.0498
FedCA 0.5695 0.4281 0.2914 0.1397 0.4883 0.3529 0.1125 0.0505

g = 0.2
ML-100K Filmtrust ML-1M MC-100K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Local 0.1987 0.0934 0.1577 0.0688 0.1831 0.1019 0.0872 0.0325
FCF 0.2704 0.1433 0.2064 0.1019 0.2219 0.1452 0.0962 0.0395
PerFedRec 0.2124 0.1254 0.2176 0.1120 0.2837 0.2013 0.1075 0.0483
FedFast 0.2969 0.1547 0.2063 0.1025 0.2778 0.1977 0.0978 0.0402
PFedRec 0.3538 0.2192 0.2088 0.1056 0.2933 0.2182 0.0988 0.0445
FedCA 0.4625 0.3189 0.2095 0.1074 0.3511 0.2557 0.1086 0.0497

g = 0.1
ML-100K Filmtrust ML-1M MC-100K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Local 0.1801 0.0898 0.1297 0.0564 0.1738 0.0947 0.0638 0.0287
FCF 0.1495 0.0685 0.1457 0.0642 0.1593 0.0781 0.0583 0.0202
PerFedRec 0.1507 0.0710 0.1566 0.0794 0.1684 0.0832 0.0598 0.0225
FedFast 0.2206 0.1073 0.1547 0.0766 0.1836 0.1049 0.0814 0.0399
PFedRec 0.1738 0.1002 0.1552 0.0781 0.1930 0.1182 0.0694 0.0377
FedCA 0.2948 0.1605 0.1682 0.0801 0.2453 0.1407 0.0763 0.0382

The best results are in bold, and the second results are underlined.

under heterogeneity levels 1.0, 0.8, 0.6, and 0.4 in Figures 5 and 6. To further validate performance
under varying heterogeneity, we added the experiments when heterogeneity levels are 0.3, 0.2, and
0.1 in Table 3. Our model achieves superior results even in extremely heterogeneous conditions,
thus further verifying the effectiveness of our composite aggregation.
Compatibility on Sequential Recommendation Task. Our approach is applicable to any recom-

mendation task equipped with embedding tables, making it suitable for a wider range of complex
scenarios. To evaluate the classical aggregation methods compared in this work, we adopt SASRec
as new backbone, a widely used baseline in sequential recommendation, aiming to validate the
effectiveness of our proposed composite aggregation mechanism in more advanced and challeng-
ing recommendation settings. As shown in Table 4, aggregation-based methods (FCF, PerFedRec,
FedFast, PFedRec, and FedCA) consistently outperform local training, demonstrating the effec-
tiveness of aggregation in sequential recommendation tasks. Furthermore, our method surpasses
similarity-based aggregation approaches (FCF, PerFedRec, FedFast, and PFedRec), indicating that
incorporating data complementarity enables more effective aggregation of embedding tables in
recommendation tasks. Notably, the NDCG metric in sequential recommendation tasks exceeds
that in traditional tasks, highlighting the advantage of modeling sequential patterns.
Visualizing Composite Aggregation. Figure 7 presents the visualization results of the similar-

ity matrix S, the complementarity matrix C, and the composite aggregation weights W, reflect-
ing their mutual influence in the overall loss function in Equation (4). We randomly select 10
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Table 4. Comparison Results of FedCA with SASRec Backbone Evaluated on Four Commonly Used Datasets

Backbones Models ML-100K Filmtrust ML-1M MC-100K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

SASRec

Local 0.1743 0.1076 0.4581 0.2359 0.1284 0.0818 0.0431 0.0238
FCF 0.2047 0.1337 0.6387 0.5430 0.1495 0.1022 0.0843 0.0487
PerFedRec 0.4821 0.2698 0.6381 0.5255 0.3026 0.1894 0.0973 0.0528
FedFast 0.5032 0.2894 0.6483 0.5297 0.4421 0.3274 0.0946 0.0521
PFedRec 0.6582 0.5519 0.7287 0.5782 0.5182 0.4371 0.1028 0.0629
FedCA 0.6783 0.5893 0.7539 0.6021 0.5633 0.4576 0.1156 0.0652

The best results are in bold.

clients for this demonstration. From the results, it can be observed that the composite aggrega-
tion weight effectively balances similarity and complementarity, accommodating both the model
similarity and data complementarity among clients. It tends to favor clients with both high sim-
ilarity and complementarity, where similarity ensures the consistency of the embedding distri-
bution for interacted items among clients, and complementarity enhances the embeddings of
non-interacted items from other clients, which is similar to the classical user-based collaborative
filtering [13].
Privacy Enhancement. To further improve the privacy capability of our proposed model, we

explored enhancing our method with Local Differential Privacy (LDP) [11]. Specifically, we
apply Laplace noise to the item embeddings QD and set the noise strength from 0.1 to 0.4 with an
interval of 0.1. As shown in Table 5, performance degrades as the noise strength X increases, while
the performance drop is slight when X is small. Hence, a moderate noise strength, e.g., X = 0.1, is
desirable to achieve a good tradeoff between model performance and privacy protection.
To further enhance the privacy of our model, we apply LDP not only to the original item

embedding parameters but also to the SVD-derived item embeddings, in order to examine its impact
on the final recommendation performance. As shown in Table 6, adding LDP to the SVD-derived
item embeddings, with the noise intensity controlled by X ′, makes the parameters more sensitive
to perturbations compared to the original item embeddings. With increasing noise intensity, the
privacy protection becomes stronger, but the recommendation performance degrades more severely.
Therefore, to balance privacy preservation and recommendation performance, we set X ′ = 0.05 for
enhancing the SVD-derived item embeddings, thereby improving both the privacy and effectiveness
of the proposed method.

Communication Overhead Analysis. We first analyzed the communication overhead theoretically.
For the FCF, the download and upload communication overhead is $ (<5 ), where< is the number
of items and 5 is the embedding dimension. PerFedRec requires downloading the extra clustered
model resulting in an overhead of $ (2<5 ). The upload overhead is $ (<5 + |ID |5 ) since it requires
uploading user profiles. FedFast has a download overhead of $ (<5 ) and an upload overhead
of $ (<5 + |ID |5 ). The overhead of PFedRec matches that of FCF. Our FedCA has a download
overhead of $ (<5 ) and an upload overhead of $ (<5 + |ID |:), where : is the number of singular
values, typically is 4. Note that the parameters transmitted in each round are consistent, resulting
in the same overhead across different communication rounds. As suggested, we compared the
communication overheads (downloads and uploads) across four varying-scale datasets, on amachine
with 64-bit floating point precision. The results in Table 7 show that our download overhead is
equal to the FCF, and our upload overhead is comparable to that of the baselines.
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Fig. 7. Visualization results regarding similarity, complementarity, and composite aggregation weights.

Time Complexity Analysis. The time overhead of our proposed method primarily involves local
training, SVD decomposition, similarity computation, complementarity computation, and opti-
mization solvingFD . As shown in Equation (7), our method indeed introduces additional steps to
enhance privacy for QB

D on the client side, yet the time complexity is acceptable. Additionally, while
our method introduces extra complementarity computation and optimization on the server side,
these operations can be executed efficiently on computationally resource-rich servers. When a large
number of clients are involved in server-side optimization, the server’s substantial computational
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Table 5. Results with Added Noises for LDP in Item Embeddings, Where X Represents Noise Intensity

X
ML-100K Filmtrust ML-1M MC-100K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

0 0.8738 0.7597 0.7725 0.5945 0.8348 0.7118 0.1351 0.0678
0.1 0.8730 0.7597 0.7701 0.5912 0.8301 0.7054 0.1348 0.0665
0.2 0.8643 0.7467 0.7678 0.5884 0.8274 0.6976 0.1337 0.0656
0.3 0.8433 0.7220 0.7619 0.5832 0.8234 0.6834 0.1322 0.0643
0.4 0.8293 0.7115 0.7523 0.5741 0.8176 0.6739 0.1302 0.0631

Table 6. Results with Added Noises for LDP in SVD-Derived Item Embeddings, Where X ′ Denotes Noise
Intensity

X ′
ML-100K Filmtrust ML-1M MC-100K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

0 0.8730 0.7597 0.7701 0.5912 0.8301 0.7054 0.1348 0.0665
0.05 0.8705 0.7546 0.7689 0.5903 0.8295 0.7027 0.1323 0.0648
0.1 0.8621 0.7474 0.7622 0.5834 0.8201 0.6933 0.1304 0.0633
0.15 0.8382 0.7201 0.7549 0.5798 0.8167 0.6798 0.1287 0.0927
0.2 0.8143 0.7045 0.7412 0.5648 0.8084 0.6593 0.1245 0.0895

Table 7. Comparison Results of Communication Overhead between FedCA and Baselines (Unit: KB)

Models ML-100K Filmtrust ML-1M MC-100K
Download ↓ Upload ↑ Download ↓ Upload ↑ Download ↓ Upload ↑ Download ↓ Upload ↑

FCF 210.25 210.25 258.88 258.88 494.20 494.20 2,467.25 2,467.25
PerFedRec 420.50 223.50 517.75 261.88 988.00 514.75 4,934.50 2,471.00
FedFast 210.25 223.50 258.88 261.88 494.20 514.75 2,467.25 2,471.00
PFedRec 210.25 210.25 258.88 258.88 494.20 494.20 2,467.25 2,467.25
FedCA 210.25 213.56 258.88 259.63 494.20 499.19 2,467.25 2,468.19

The best results are in bold, and the second results are underlined.

resources and efficient parallelization techniques can be leveraged to significantly reduce runtime.
We present the specific run-time consumption at a single client, averaged over five runs on four
datasets in Table 8, demonstrating that the overhead of the SVD step (0.02 s) is greatly less than
that of local training (1.94 s) on ML-1M dataset. Moreover, the runtime of the optimization step
(0.59 s) is considerably smaller than that of computing the similarity (0.86 s) and complementarity
(0.88 s) matrices. Hence, in practice, this time complexity is acceptable. Besides, since local training
and server-side optimization can be performed asynchronously, where the server computes the
similarity and complementarity matrix from the previous round while clients conduct local training
and SVD decomposition. This process can effectively improve time efficiency.
Ablation Study. In this section, we investigate the contributions of different components of the

proposed method, including the proximal terms, the combination of different loss functions, and
the use of various complementarity metrics, to demonstrate the validity of each component.
First, we explore the proximal term during local training. We explored the effectiveness of the

proximal term in FR tasks, which is widely used in federated vision domains. Table 9 presents the
experimental results with (w) and without (w/o) the proximal term based on the local task-specific
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Table 8. Empirical Run-Time Results during Different Training Stages

Datasets Local Training SVD Similarity Complementarity Optimization

ML-100K 0.53 s 0.005 s 0.24 s 0.26 s 0.13 s
Filmtrust 0.12 s 0.002 s 0.09 s 0.11 s 0.08 s
ML-1M 1.94 s 0.018 s 0.86 s 0.88 s 0.59 s
MC-100K 0.18 s 0.003 s 0.11 s 0.12 s 0.09 s

Table 9. Ablation Study Results of the Proximal Term in FR Tasks

Proximal ML-100K Filmtrust ML-1M MC-100K
Term HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

w 0.8469 0.7274 0.7605 0.5744 0.8168 0.6801 0.1301 0.0577
w/o 0.8738 0.7597 0.7725 0.5945 0.8348 0.7118 0.1351 0.0678

The best results are in bold.

Table 10. Ablation Study Results for Using Different Loss Combinations

Loss Type ML-100K Filmtrust ML-1M MC-100K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

LD 0.4878 0.2786 0.6517 0.5126 0.4912 0.2751 0.1259 0.0534
LD + F2 0.8431 0.6983 0.7625 0.5752 0.8049 0.6585 0.1289 0.0606
LD + FB 0.8653 0.7457 0.7645 0.5791 0.8103 0.6987 0.1268 0.0565
LD + F2 + FB 0.8738 0.7597 0.7725 0.5945 0.8348 0.7118 0.1351 0.0678

The best results are in bold.

loss in Equation (12). It can be observed that not utilizing the proximal term constraint which
is effective in federated vision domains yields higher predictive performance in FR tasks. This
indicates that recommendation tasks require stronger personalization at the local client level.
Hence, it is not necessary to enforce the local model to be as similar as to the global model. Instead,
the local model should be given the flexibility to develop a highly personalized representation
that is tailored to the specific needs and preferences of each individual client. This approach not
only enhances the recommendation accuracy but also aligns better with the inherent nature of
recommendation tasks, which prioritize user-specific personalization over global consistency.
Second, we explore different combinations of loss functions to validate the effectiveness of the

proposed composite aggregation mechanism. To validate the contributions of model similarity
and data complementarity modules, we decompose the overall optimization loss in Equation
(4) into three basic components: client-specific task loss LD , model similarity loss FB , and data
complementarity loss F2 . Since the server cannot access local data of clients, the client-specific loss
is represented by the first squared loss term in Equation (5). From the experimental results shown
in Table 10, we can verify the contribution of each proposed component and observe the following
important conclusions.

Optimizing the aggregation process using only the LD component is analogous to the weighted
aggregation in FedAvg. This variant helps demonstrate the basic aggregation without additional
constraints. Based on that, considering complementarity F2 and similarity FB modules separately
both improve model performance, indicating that both factors play important roles in the aggrega-
tion process. Given the importance of both complementarity and similarity, our proposed composite
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Table 11. Ablation Study Results for Using Different Data Complementarity Metrics

Metrics ML-100K Filmtrust ML-1M MC-100K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

raw(·) 0.8739 0.7597 0.7729 0.5946 0.8350 0.7121 0.1353 0.0678
sin(·) 0.8536 0.7395 0.7496 0.5573 0.8135 0.6814 0.1239 0.0520
cos(·) 0.8738 0.7597 0.7725 0.5945 0.8348 0.7118 0.1351 0.0678

aggregation method takes a holistic approach by integrating these two factors within a unified
optimization framework. By combining the similarity FB and complementarity F2 modules, our
method is able to leverage the strengths of both aspects simultaneously. This integration allows for
a more nuanced and effective aggregation of embedding tables, which is particularly beneficial for
FR tasks. As a result, the composite aggregation method significantly improves the effectiveness of
aggregating embedding tables in FR tasks, leading to better recommendation accuracy.

Finally, we examine the impact of different data proxies for complementarity metrics on model
performance. Specifically, we analyze the original operation raw(·), the sine operation sin(·), and
the cosine operation cos(·) to identify the practical solution that balances data utility and privacy
preservation. As shown in Figure 11, the original operation without any data proxy yields the best
performance but directly exposes raw user representations, posing privacy risks. The sine operation
protects privacy through nonlinear transformation of raw data but incurs significant performance
degradation. In contrast, the cosine-based SVD operation achieves a favorable tradeoff between
performance retention and privacy protection.

Sensitivity Analysis. In this section, we provide the sensitivity analysis of the proposed method to
various hyperparameters, including the interpolation coefficient d , the proportion of participating
clients A , and the coefficients controlling data similarity U and model complementarity V , in order
to evaluate performance under different parameter settings.

First, we explore the effect of the interpolation method with varying interpolation coefficients d
during local inference. Different interpolation coefficients reflect varying proportions of combining
the local and aggregatedmodels, thereby balancing personalization in local clients with collaborative
information in the global server. From the results in Table 12, it can be seen that the local model
achieved optimal performance when d = 0.8 and d = 0.9 on the ML-100K and ML-1M datasets,
respectively. This suggests that during local inference, a balance should be struck between the
global model at current round and the local model at last round. This balance helps mitigate the
spatial misalignment issue caused by the client-specific user embedding pD in FR tasks, which is
the main difference compared to federated vision domain.

Second, we investigate the impact of varying client participation ratios on overall performance
in FR, analyzing how the proposed method scales with the number of clients in FL systems,
thereby providing insights for large-scale deployment. Specifically, Figure 8 illustrates the impact of
varying client participation ratios A on recommendation performance. As the ratio increases, overall
performance improves steadily. However, beyond a certain point, the gains become marginal.
Considering the tradeoff between system communication efficiency and computational overhead,
we set the client participation ratio to A = 0.6 to balance model performance and communication
efficiency.

Finally, we examine the impact of the model similarity coefficient U and the data complementarity
coefficient V on overall performance. The unified composite aggregation framework proposed in
this work requires coordination between U and V to balance the importance of model similarity
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Table 12. Results for the Interpolation Method on Two Utilized Datasets during Local
Inference

d
ML-100K Filmtrust ML-1M MC-100K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

0.5 0.6681 0.4930 0.7056 0.5564 0.6833 0.4892 0.1251 0.0565
0.6 0.7031 0.5295 0.7156 0.5644 0.7028 0.5158 0.1262 0.0571
0.7 0.7434 0.5675 0.7335 0.5642 0.8025 0.6711 0.1262 0.0552
0.8 0.8738 0.7595 0.7515 0.5712 0.8278 0.6949 0.1284 0.0560
0.9 0.8611 0.7432 0.7725 0.5945 0.8348 0.7118 0.1351 0.0678
1.0 0.7922 0.6329 0.6457 0.4556 0.8008 0.6918 0.1301 0.0578

The best results are in bold.

Fig. 8. Results of our FedCA with varying ratios of participated clients.

Fig. 9. Impact of U on HR@10 across four datasets.

and data complementarity throughout the overall optimization process. Figures 9 and 11, respec-
tively, demonstrate the performance impact of α and β on HR@10 across four datasets. Figures 10
and 12, respectively, demonstrate the performance impact of U and V on NDCG@10 across four
datasets. Overall, the variations of these hyperparameters have relatively minor effects on model
performance. Thus, our method exhibits insensitivity to hyperparameters, although manual adjust-
ment of these parameters is still necessary to achieve optimal performance. Through experimental
analysis, it was found that the optimal prediction accuracy is achieved with U = 0.5, V = 0.4 for
ML-100K, U = 0.3, V = 0.3 for Filmtrust, U = 0.5, V = 0.2 for ML-1M, and U = 0.3, V = 0.1 for
MC-100K datasets. Furthermore, we observed that overall, the weight of U is larger than that of
V . This indicates that throughout the aggregation process, greater emphasis should be placed on
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Fig. 10. Impact of U on NDCG@10 across four datasets.

Fig. 11. Impact of V on HR@10 across four datasets.

Fig. 12. Impact of V on NDCG@10 across four datasets.

model similarity to ensure that the parameter distribution of the clients to be aggregated remains
consistent with their own parameters. Subsequently, it is essential to take into account the concept
of complementary clients in order to enhance the generalization capability of the model on the test
set.
Regarding the optimal parameter selection, we would like to provide the following additional

details. (1) During the tuning of U and V , we identified some general guidelines that may help
reduce the complexity. For instance, the similarity parameter U generally is larger than the comple-
mentarity parameter V , indicating that the model should prioritize similarity before considering
complementarity. Hence, in most scenarios, U = 0.5 and V = 0.2 can effectively balance similarity
and complementarity. (2) Certainly, to achieve optimal results, partitioning a small portion of the
dataset as a validation set for hyperparameter search around our recommended parameters is
advisable. This approach is practical for large-scale requirements and does not incur significant
additional costs before deployment. (3) The versatility of our model necessitates addressing the
parameter tuning issue, which we have discussed as a potential limitation in the conclusion. Besides,
developing an automatic parameter search technique to reduce the complexity presents a promising
direction for future research.
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7 Conclusion
This work first rethinks the fundamental differences between federated vision and FR tasks. Specif-
ically, the federated vision community primarily utilizes structured parameters (e.g., CNNs) for
federated optimization, whereas FR tasks mainly employ one-to-one item embedding tables for
personalized recommendations. This key difference renders similarity-based aggregation borrowed
from federated vision domain ineffective for aggregating embedding tables, leading to embedding
skew issues. To address the above challenge, we introduce a composite aggregation mechanism
tailored for FR tasks. Specifically, by combining model similarity and data complementarity within
a unified optimization framework, our approach enhances the trained embeddings of items that a
client has already interacted with and optimizes the non-trained embeddings of items the client
has not interacted with. This enables effective prediction of future items. Besides, we explore
the ineffectiveness of the proximal term on personalized preferences in FR tasks and propose an
interpolation method to alleviate the spatial misalignment issue in FRs.

This research specifically proposes a promising composite aggregation framework for FR tasks.
It is a model-agnostic, plug-and-play module that can be seamlessly integrated into mainstream
FR models. However, we need to manually adjust the weight allocation for similarity and comple-
mentarity in this work. These limitations can be alleviated by using automated machine learning
techniques to learn the weight allocation adaptively in future studies. Besides, exploring more
suitable model similarity and data complementarity mechanisms for FR tasks is also a promising
research direction.
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